
Advanced Review

Genome-scale metabolic networks
Marco Terzer1 Nathaniel D. Maynard2 Markus W. Covert2 and Jörg
Stelling1∗

During the last decade, models have been developed to characterize cellular
metabolism at the level of an entire metabolic network. The main concept
that underlies whole-network metabolic modeling is the identification and
mathematical definition of constraints. Here, we review large-scale metabolic
network modeling, in particular, stoichiometric- and constraint-based approaches.
Although many such models have been reconstructed, few networks have been
extensively validated and tested experimentally, and we focus on these. We
describe how metabolic networks can be represented using stoichiometric matrices
and well-defined constraints on metabolic fluxes. We then discuss relatively
successful approaches, including flux balance analysis (FBA), pathway analysis,
and common extensions or modifications to these approaches. Finally, we describe
techniques for integrating these approaches with models of other biological
processes.  2009 John Wiley & Sons, Inc. WIREs Syst Biol Med

LARGE-SCALE NETWORK ANALYSIS

Metabolic networks are well-enough character-
ized that it is now possible to construct and

analyze mathematical models of their behavior at
a whole-genome level.1,2 This is not due to rich,
extensive datasets—in fact, the existing data are far
from comprehensive.3 Even in the best-understood
organisms, the majority of kinetic parameters remain
undetermined. Instead, whole-network modeling of
metabolism has largely been enabled by the develop-
ment of new computational methods that are able to
make compelling and testable predictions even with-
out many parameters. As a result, metabolic modeling
has become a bellwether, leading the way toward a
fundamental goal in biology: a computational model
of an entire cell.

The main concept that underlies whole-network
metabolic modeling is the identification and math-
ematical definition of constraints. These constraints
then separate feasible and infeasible metabolic behav-
iors. Importantly, the constraints are often much easier
to identify than kinetic parameters, making large-scale
model building possible.
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Most analysis techniques in this area employ
up to three types of constraints.1 Physico-chemical
constraints are defined by conservation laws for
mass and energy, dependency of reaction rates on
metabolite concentrations, and negative free energy
change for spontaneous reactions. Environmental
constraints are imposed as a result of specific
conditions, such as the availability of nutrients
or electron acceptors. Finally, the effects of gene
expression may result in regulatory constraints as
the cell adapts to environmental changes.

Here, we review large-scale metabolic net-
work modeling, focusing on stoichiometric- and
constraint-based approaches. After discussing how
these approaches work, we will highlight common
and relatively successful approaches as well as exist-
ing models. Finally, we will comment on the possibility
of integrating these models with models of other bio-
logical processes, such as transcriptional regulation
and signal transduction, as another step toward true
whole-cell modeling.

MODEL DEVELOPMENT

The Stoichiometric Matrix
Although there are a variety of metabolic model-
ing approaches, all of them share a fundamental
requirement: a stoichiometric matrix based on a
reconstructed metabolic network. Each column of the
stoichiometric matrix corresponds to a chemical or
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FIGURE 1 | (a) A small reaction network consisting of three metabolites (A, B, and C), three transport reactions, and three enzymatic reactions is
constructed. vi indicates the flux through reaction i and bj represents the flux through transport protein j. (b) Material balance equations are shown
for each metabolite. (c) A stoichiometric matrix is populated according to Eq. 1. (d) Assumptions, constraints, and an objective are listed for the
system.

transport reaction, with non-zero values that identify
the metabolites which participate in the reaction as
well as the stoichiometric coefficients that correspond
to each metabolite (Figure 1). The matrix also con-
tains directionality: substrate and product metabolites
in the matrix have negative and positive coefficients,
respectively. By considering the matrix rows instead
of the columns, the stoichiometric matrix can also be
thought of as the list of reactions in which a given
metabolite participates. This interpretation is useful
when defining mass balances for each metabolite in
the network.

These mass balances are expressed by a system
of differential equations written for all the metabolite
concentrations c as follows:

dc(t)
dt

= S · v(t) (1)

where S is the stoichiometric matrix and v(t) the vector
of reaction rates. Note that metabolism operates
on a much faster time-scale than regulatory or cell
division events. It is thus often reasonable to assume
that metabolic dynamics have reached a quasi- or
pseudo-steady state, where metabolite concentrations
do not change. This leads to the metabolite balancing
equation

S · v(t) = 0 (2)

Equation (2) is a homogeneous system of linear
equations. It requires that each metabolite is consumed
in the same quantity as it is produced, and is the basis
for further analysis of metabolic fluxes based on the
stoichiometric matrix.

The process of building stoichiometric matrices
has been amply described and reviewed elsewhere.4

Briefly, this process involves gathering a variety of
genomic, biochemical, and physiological data from
the primary literature as well as databases, such
as Uniprot,5 BRENDA,6 BioCyc,7 KEGG,8 and the
Enzyme Commission database.9 This information is
used to synthesize a list of chemical and transport
reactions together with their metabolite participants
for a given cell. In addition, the chemical formula and
charge of each metabolite should be inspected to verify
that the chemical reaction is balanced. A reconstructed
network model is only as good as its corresponding
stoichiometric matrix, and the amount and quality
of experimental evidence supporting the inclusion
of a reaction in the matrix can vary significantly.
Therefore, careful curation and continual updates to
the matrix are critical.

Constraints on Reaction Rates
The stoichiometric matrix can be annotated by
including further important information about either
the reactions or the metabolites. The most common
matrix annotations include the reversibility of each
reaction and the cellular compartment in which
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each reaction occurs. More generally, reaction rates
are bounded as a consequence of kinetic constants,
measured or estimated concentration ratios or to
reflect the experimental setup. Upper and lower limits
can apply to fluxes of individual reactions (vmin ≤ v ≤
vmax), and reaction directions can be defined by simply
setting vmin = 0 or vmax = 0 for forward or backward
irreversible reactions, respectively. Additional matrix
annotation might include more detailed information
about reaction kinetics. For example, it is possible
to calculate metabolite uptake or secretion rates
without difficulty in several cases; these can be
used as a part of the metabolic model. In addition,
13C chase experiments measure concentrations of
internal metabolites, from which enzymatic fluxes can
often be inferred.10,11 At the present such ‘fluxomic’
approaches can only be applied to highly reduced
metabolic networks, although substantial progress has
been made in recent years.

Links to Genomic Information
The stoichiometric matrix can also be linked explic-
itly to the genome and gene expression data for use
in certain applications. First, one can connect each
chemical or transport reaction to the proteins and
genes which enable it to occur. These relationships
are often complicated, because proteins are frequently
made up of multiple subunits, multiple enzymes some-
times catalyze the same chemical reaction, and certain
enzymes catalyze more than one reaction. Delineat-
ing these gene–protein–reaction relationships enables
the comparison of computational network analy-
ses with experimentally determined gene knockout
phenotypes. Gene expression data and transcrip-
tion factor–gene relationships can also be critical to
understanding more complex metabolic behaviors, as
described below.

Existing Genome-Scale Models
To date, dozens of large-scale metabolic reconstruc-
tions have been published.12 Most reconstructions are
of human pathogens, model organisms, or organisms
used in the biotechnology industry to produce valuable
chemical products. For the purposes of this review,
we will briefly highlight three of the most extensively
tested reconstructions: Escherichia coli,13 Geobacter
sulferreducens,14 and Saccharomyces cerevisiae.15

In terms of gene coverage, the most complete
of these reconstructions is that of E. coli,13

which has been the product of over a decade of
sustained effort.16 The most recent reconstruction
includes 1260 of E. coli’s 4405 genes, together with
regulatory events, compartmentalization, P/O ratio,

reaction thermodynamics, energetic requirements for
maintenance, and known kinetic effects. The model
has been used for a variety of applications, including
the prediction of growth rates, substrate uptake, and
by-product secretion for thousands of combinations
of knockout strains and culture conditions.17

Geobacter species network reconstructions have
also been developed due to their remarkable bioreme-
diative potential.18 These organisms have somewhat
unique metabolic properties enabling them to oxi-
dize organic compounds using a variety of toxic
or radioactive metals as electron acceptors. The G.
sulferreducens metabolic model of metabolism14 has
been used to engineer a potentially useful strain with
high respiration capacity and low growth rate.19

The S. cerevisiae model is notable, in particular,
for the recent efforts by the yeast community to
develop a consensus network. Several reconstructions
had previously been made and varied significantly in
their content.20–22 As a result, leading researchers in
the yeast field along with metabolic modeling experts
were brought together for a weekend ‘jamboree’
to agree on the specifics of yeast metabolism. The
resulting consensus metabolic network reconstruction
was represented in a standard format, Systems Biology
Markup Language (SBML: http://www.sbml.org/)23

and made publicly available. This consensus network
is distinct from an actual in silico model, because
it must be associated with analytical approaches
to produce metabolic simulations. Many of the
significant modeling approaches are detailed below.

STOICHIOMETRIC NETWORK
ANALYSIS
The analysis of genome-scale metabolic models relies
on three basic approaches: (1) characterizing the
general network structure, (2) identifying particular
flux distributions, or (3) analyzing all possible flux
distributions in a network. The following sections
are organized according to the corresponding analysis
methods.

Structural Analysis: Characterizing the
Nullspace
Nullspace analysis is the first simple tool to perform
consistency validations with a metabolic network.
Two or more metabolites are called conserved moieties
if the overall concentration of all remains constant. In
such cases, consumption of either metabolite involves
production of the other. Some examples of conserved
moieties include NAD+ and NADH, or ATP, ADP,
and AMP. Detecting conserved moieties requires only
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the stoichiometric matrix S. Several metabolites are
part of a conserved group if the corresponding rows
in the stoichiometric matrix are linearly dependent.
Different methods exist to evaluate dependent rows,
for instance, Gaussian elimination or singular value
decomposition (SVD).24 All of these methods compute
a basis for the left nullspace of S or, equivalently, a
basis for the nullspace of the transpose of S. The set of
basis vectors calculated by these methods—and the
conserved moieties—are unfortunately non-unique.
However, a convex basis can be constructed to derive
a unique minimal definition for conserved groups (for
an application example, see Famili and Palsson25).

Analysis of balanced metabolites also uses
nullspace basis vectors. The metabolite balancing
equation (2) defines a subspace of Rn, where n denotes
the number of reactions, and is also the dimensionality
of the space. The kernel matrix K is a basis for the
nullspace, but it is not unique. However, any valid flux
vector v = (v1, v2, . . . , vn)T that defines a flux value vi

for each reaction i is a linear combination of column
vectors of K, that is,

v = a1 · K1 + a2 · K2 + . . . + an · Kn = K · a (3)

Equation (3) enables the identification of key reaction
properties, including those shown in the sidebar; see
also Figure 3.

RESULTS OF NULLSPACE ANALYSIS

1. If the kernel matrix contains a zero-row, the
corresponding reaction cannot carry a (non-
zero) flux. We can remove this reaction for all
analysis employing the steady-state assumption.

2. If two matrix rows differ only by a constant
factor, the two reactions are coupled, that
is, the flux through one reaction is always a
multiple of the flux through the other reaction;
consequently either both reactions are active or
both are passive. Such reactions are presumably
co-regulated.26

3. Given reversibility constraints, inconsistent reac-
tion coupling can be detected. For example, two
coupled forward-only reactions with a negative
coupling factor cannot carry a non-zero flux
without violating an irreversibility constraint,
since one reaction would have to operate in
backward mode.

Model Consistency
An important step in model building is determining
the consistency of the network, meaning technical
consistency without considering experimental data
or biological interpretation. One method involves
the steps shown in the sidebar; the method relies
on the analysis of variability and coupling in
metabolic fluxes as introduced in Burgard et al.27 and
Mahadevan and Schilling.28 Another method, which

(a)

(c) (d)

(b)
FIGURE 2 | (a) Nullspace (blue hyperplane)
and the two-dimensional cone as intersection
of the nullspace with the positive orthant.
(b) Additional boundary constraints (dotted
lines) shape a bounded convex region. The flux
balance analysis (FBA) objective function (blue
solid line) touches the region in the optimal
point (blue circle). (c) The same cone, now in a
two-dimensional view, with feasible regions for
wild-type (red area) and mutant (yellow). The
FBA objective function touches the regions at
the optimal points (blue circles). If Minimization
of metabolic adjustment (MoMA) is used
instead, the distance to the best wild-type
value is minimized, resulting in a different
optimal value for the mutant (green triangle).
(d) As a third alternative, regulatory on/off
minimization (ROOM) minimizes the number of
necessary changes. The brown lines indicate
that one variable is kept constant, implying a
minimal number of changes for this example.
Here, two alternative optimal values are
possible (brown squares).
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FIGURE 3 | Network inconsistencies due to
dead-end metabolites (a) or reaction couplings (b).
Nodes correspond to metabolites and arrows
denote reactions.

(a) (b)

· · ·

focuses on stoichiometric inconsistencies, was recently
described.29

MODEL CONSISTENCY

1. Minimize and maximize the flux value for each
reaction.

(a) If min and max value are zero, the reaction
is a zero flux reaction, that is, it cannot
have a flux value other than zero. It can be
removed if no model corrections are made,
without affecting the outcome of subsequent
simulations.

(b) If min or max value is zero and the reaction is
reversible, we have an unsatisfied reversibil-
ity. Either the reversibility constraint is too
lax or another component is missing, dis-
abling the operation in one direction. Tight-
ening this constraint might lead to better
simulation performance.

(c) If the minimal and maximal values are
non-zero and have equal sign, the reaction
is essential. Deletion of the reaction, for
example, by gene knockout, is predicted to
be lethal.

2. For reactions not of type (1c), set the bounds
to zero. If biomass cannot be produced, the
reaction is essential. Again, reaction removal is
associated with lethality.

Identifying Particular Solutions: FBA
If reaction reversibilities and maximum throughput
rates are incorporated as constraints on the steady-
state model, the solution space reduces from the
nullspace to a convex polyhedral cone called
the flux cone. Because these constraints can be
represented as linear equations and inequalities,
linear programming (LP) methods can be used to
identify points with optimal values of a given
objective function (for an introduction to LP, see,
for instance, Cormen et al.30). In the simplest case,
a single reaction flux is optimized. Many different
objective functions have been tested for their utility

in predicting phenotypic behavior, relying on smaller-
scale network models.31,32 One common practice is
to define an artificial growth reaction that takes the
chemical dry-weight components of the cell, in their
proper ratios, and ‘produces’ cellular biomass. This
reaction can be used as the objective function under
certain conditions, depending on the cell type and
environmental conditions.33 The term flux balance
analysis stands for the application of LP methods to
analyze fluxes under balanced metabolite conditions
(Figure 2b).

As FBA was introduced, the objective function
was probably the most discomforting component
of the method. Objections to this approach ranged
from the biological to the mathematical.31,34 One
major biological concern was whether the objective
function made biological sense—do cells actually
have objectives? Use of an objective function was
also unsatisfying to those who doubted that FBA
could predict cellular phenotypes in the absence
of kinetic parameters. The FBA approach seemed
to undermine traditional metabolic models which
were composed of equations describing the properties
of, and interactions between, small molecules and
proteins.

To address these concerns, some of the earliest
work in experimentally testing FBA focused on
whether or not optimization of growth was a
reasonable objective that could be observed in culture.
Initial results were promising: model predictions of E.
coli optimal growth and by-product secretion rates
matched experimental measurements.35 However,
this did not hold true for certain substrates, like
glycerol, where E. coli growth was suboptimal.
This discrepancy between model and experiment was
eventually reconciled when E. coli was grown on
glycerol for several hundred generations and it was
shown to evolve toward the computationally predicted
optimal growth rate.36 Interestingly, the phenotypic
evolutionary endpoint was shown to be reproducible
between cultures, whereas the underlying gene
expression states varied.37 The link between optimal
growth and evolution was further strengthened when
FBA was able to predict a priori the endpoint growth
rates for several E. coli deletion strains.38

Note that often the optimal flux distributions
are not unique. Rather, in general, a set of
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alternate optima satisfy the LP problem, and the
available solvers may therefore return different
results. Sometimes, it is desirable to enumerate all
alternate optima for a given objective, but this is
computationally challenging.39,40 Another way to
deal with this ambiguity is flux variability analysis,
which examines how individual fluxes can be changed
without affecting optimality.28,41 Some LP packages
directly report variability by sensitivity ranges. The
sensitivity range can also be computed by determining
the optimal value for a given objective, fixing the
optimal objective value (or a desired optimality range),
and minimizing and maximizing fluxes for reactions
of interest.

Finally, multiple iterations of FBA can be used to
generate dynamic simulations. An initial optimization
can be run for any given starting conditions, and using
the resulting flux distribution, external and internal
initial concentrations can be updated over a given time
step. Critically, this time step must be large enough
that the quasi-steady-state assumption in Eq. (2) still
holds. However, in practice, a time step of ∼ 1 s
should be large enough. The new conditions define
the environment for the next iteration step, leading
to a time-course for the environmental conditions as
well as for optimal flux patterns. With this type of
modeling, glucose uptake was predicted on minimal
media under aerobic and anaerobic conditions.42

Some groups have also integrated kinetic information
with flux balance models.43–46

Deletion Strain Phenotypes
A common use of FBA is to compute the essentiality
of all the genes in the network, by constraining the
corresponding reactions fluxes to zero and comparing
to observed deletion strain phenotypes.47 However,
some alternate methods have since been proposed.
Using a reference flux vector of the wild-type (deter-
mined experimentally or estimated by an FBA sim-
ulation of the wild-type strain), these optimization
strategies minimize the adjustment compared with
wild-type fluxes. Minimization of metabolic adjust-
ment (MoMA)48 uses quadratic programming to min-
imize the sum-of-squares difference between mutant
and wild-type reference flux distribution. Note that
the MoMA solution is not optimal in terms of the
wild-type objective. For instance, if the wild-type max-
imizes for biomass production, the mutant type might
not exploit its full growth potential (see Figure 2c).
Furthermore, because it depends on an initial non-
unique FBA solution, the MoMA solution is also non-
unique. Regulatory on/off minimization (ROOM)49

minimizes the number of (significant) flux changes
associated with regulation effort. ROOM defines a

set of Boolean on/off variables for all reactions. An
on state means that the corresponding reaction is up-
or down-regulated. For off variables, an additional
constraint ensures that the mutant flux lies within a
predefined interval around the wild-type flux; devi-
ations inside the interval are regarded insignificant.
Due to the binary variables, mixed integer linear pro-
gramming (MILP) is used to minimize the number of
significant regulation changes (see Figure 2d). Overall,
the main difference between MoMA and ROOM is
in the motivation behind the approaches. MoMA has
a mathematical origin in the formulation of a mini-
mal response to perturbations. ROOM uses a more
qualitative, biological approach to control of gene
expression, assuming that a cell, in the long run, tries
to minimize the number of significant flux changes.

Comprehensive Approaches
It is also possible to analyze flux cones without
the need to define an objective function. Next, we
introduce two approaches that treat the flux cone as
a whole through minimal sets of elements: pathway
analysis and the determination of minimal cut sets.

Pathway Analysis
As described above, all steady-state flux distributions
can be constructed from nullspace basis vectors.
Elementary (flux) modes have similar properties, but
also some important differences: elementary modes
(EMs) are feasible vectors, whereas nullspace basis
vectors might violate reaction reversibility constraints.
In addition, all feasible flux vectors—and only feasible
ones—can be constructed from non-negative (conic)
combinations of EMs. From nullspace vectors, feasible
and infeasible vectors can be constructed, using any
linear combination.

To calculate a unique, smallest possible set
of EMs, an additional constraint is introduced:
minimality. A feasible flux vector is minimal (or
elementary) if no other flux vector has the same
reactions with zero flux plus additional ones. As a
consequence, EMs describe basic non-decomposable
operation modes of the network.50,51 Extreme
pathways (EPs) constitute a very similar concept,
associated with the ‘shortest’ possible paths in the
network (note that ‘shortest’ is misleading). EMs
are actually a superset of EPs, arising from a
slightly different treatment of reversible transport
reactions (see Klamt and Stelling52 and Wagner and
Urbanczik53 for exact definitions). Moreover, in a
strong mathematical sense, neither EMs nor EPs
are minimal, and hence also not a minimal set of
generators. EMs and EPs operate in a reconfigured
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network with enhanced reaction dimensionality, and
they are only minimal in the augmented flux space. We
refer the reader to Klamt and Stelling52 and Wagner
and Urbanczik53 and focus here on EMs. The concepts
also apply to EPs unless stated otherwise.

Unfortunately, these pathway sets grow expo-
nentially with increasing network size. It is not yet
possible to compute EMs for genome-scale networks
under general conditions.51,54 Nevertheless, EMs have
interesting properties because they are minimal, and
hence contain information about the smallest func-
tional units of complex networks. Pathway analysis
uncovers all alternative pathways in contrast to FBA,
where only a single (optimal) pathway is found. All
modes of the network are superpositions of EMs, and
an alpha-spectrum—the contribution of individual
pathways to an observed (in vivo) flux pattern—has
been analyzed for a simplified core metabolic network
and for human red blood cell metabolism.55 Reaction
participation in EMs also indicates a reaction’s impor-
tance for different substrate/product conversions.

Furthermore, the number of active reactions
in a single EM is related to the necessary enzymes,
and a cost function can be derived. In combination
with benefit functions known from FBA, we get
a multiple objective, which might indeed be better
suited to represent the complex optimization strategy
of the cell.51,56 To analyze flux variability, only EMs
above a certain optimality criterion can be considered,
and the coefficient of variation—the relative standard
deviation of reaction fluxes—indicates variability or
flexibility of the fluxes51 (see Figure 4 for an example).
In addition, EMs can be used to reliably predict
viability of gene deletion mutants. Therefore, only
EMs are kept where the reaction of interest does not
participate. An empty set for the perturbed network
indicates that the network is structurally unable to
operate under steady-state conditions.56

Minimal Cut Sets
Minimal cut sets give an opposite view of a metabolic
network when compared with EMs. EMs describe
minimal requirements to operate the network;
minimal cut sets define smallest possible reaction sets
that cause network failure with respect to a specific
function such as biomass production.57 In fact, both
concepts completely describe the metabolic network
(of course without involved regulation); formally, they
are dual.58 The simplest minimal cut sets are essential
reactions, since they have minimal size, and their
removal disables any target reaction. Synthetic lethals
are minimal cut sets of size two: lethality is caused
by the simultaneous knockout of two non-essential
reactions. We can proceed with this concept for larger
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FIGURE 4 | Ethanol excretion rate related to biomass yield for
178,575 elementary modes (EMs) of an Escherichia coli central
metabolism network with 97 metabolites and 120 reactions; only
growth on glucose (Glc) was considered. Ethanol production is possible
only for suboptimal growth.

sets, requiring minimality or irreducibility, similar to
the non-decomposability of EMs. Not surprisingly, it
is computationally expensive to enumerate all minimal
cut sets for large networks.

Network dysfunction is associated with minimal
cut sets. Such dysfunction may be caused internally
through spontaneous mutations, or have external
reasons and be intentional in the case of gene
deletions or RNA interference. Using minimal cut
sets, internal structural fragility and robustness can
be analyzed. In metabolic engineering, minimal cut
sets identify potential drug targets, driving new
hypotheses, or narrowing down test candidates
for expensive experiments. Finally, minimal cut
sets have practical applications in the design and
optimization of biotechnological processes. Methods
such as OptKnock59 can be used to study minimal
intervention strategies for overproduction of target
biochemicals in microbial strains.

INCORPORATING REGULATION

Constraint-based analysis has for the most part only
focused on metabolism, with a notable exception
in signal transduction.60 For instance, it is unclear
whether the assumptions required for FBA can
be justifiably applied to other biological processes.
Instead, some studies have integrated FBA-based
metabolic models with possibly more appropriate
models for transcriptional regulatory and signaling
networks. Also, these approaches start to address the
dynamic behavior of metabolic networks.

However, gene expression has a dramatic
additional effect on metabolic networks. For example,
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only about 50% of the E. coli genome is expressed
under typical culture conditions, and therefore half
of the stoichiometric matrix might be significantly
constrained at any given time. This has major
ramifications for convex-based analyses that ignore
gene expression. The calculated pathways will include
several false positives which never occur in the living
cell. Furthermore, the optimal solutions determined by
FBA will most likely be incorrect in all but relatively
simple growth conditions.

To explicitly account for the effects of gene
expression on metabolic behavior, an integrated pro-
cedure was developed whereby transcriptional regu-
latory events were described using Boolean logic and
used to constrain the solution space further.61 The sta-
tus of regulated transcription is found by evaluating
intra- or extra-cellular conditions. Transcription may
be switched on or off by the presence or absence of par-
ticular metabolites, proteins, or signaling molecules.
Sometimes, concentrations above a certain threshold
are required to trigger regulatory events. If an acti-
vating or inhibiting expression changes—caused by
updated concentration values—the rate constraints for
the regulated reaction change, resulting in up-/down-
regulations. In the simplest case, inhibition sets the
constraints to zero, and activation causes a reset
back to the original boundary values. This method
was found to significantly reduce the number of EPs
calculated in a simple system.62

Combination of the method with FBA in an
approach called regulatory FBA or rFBA (Figure 5)
produced dramatically more accurate model predic-
tions in organisms such as E. coli63 and yeast.20 More
specifically, Covert et al.64 have used rFBA to derive
time courses for E. coli with a genome-scale model and
to correctly predict viability for 106 of 116 mutant
strain/growth medium conditions. In Covert et al.,63

an extended model with 1010 genes was used in an

iterative process to generate and test hypotheses, and
missing components and interactions in regulatory or
metabolic networks could be identified.

The initial work focused on reconstructing
transcriptional regulatory networks based directly on
findings from the primary literature. Boolean logic
best represented the typically qualitative conclusions
of experimental studies (e.g., ‘transcription factor
X was observed to repress expression of target
gene Y’). However, subsequent studies have used
microarray data to constrain FBA65 as well as machine
learning techniques to generate more sophisticated
regulatory network models.66 rFBA models stand to
gain significantly from these developments.

CURRENT CHALLENGES

Automated Network Reconstruction
The earliest metabolic network reconstructions were
manually generated. Since that time, several tools
that support network reconstruction have been devel-
oped, such as Pathway Tools,67 KEGG Pathways,68

PUMA2,69 and SimPheny.70 However, unknown
reactions and the necessary validation of database
entries still result in time-intensive manual network
curation.71 Therefore, although significant effort is
dedicated to developing computational approaches
for fully automatic network reconstruction72 and
reconciliation,29 curation-based efforts such as the
jamboree currently produce the ‘gold standard’
reconstructions.

One automated reconstruction method aims
to identify necessary reactions from an organism-
wide database such that these reactions could
allow growth of mutants that are experimentally
viable, but predicted to be inviable by an existing
stoichiometric model.73 This approach considers
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FIGURE 5 | Schematic
representation of regulated flux
balance analysis (rFBA) using Boolean
expressions to simulate regulatory
elements. The concept is generalized
to integrated FBA (iFBA), also
incorporating ordinary differential
equations (ODEs) to simulate
regulation. The algorithm is an
iterative procedure, generating time
series output at each iteration.

 2009 John Wiley & Sons, Inc.



WIREs Systems Biology and Medicine Genome-scale metabolic networks

only one experimental condition at a time, it
yields (potentially large) sets of candidate reactions,
and it is computationally expensive because for
each condition and candidate reaction FBA analysis
has to be performed. Other methods rely on
information fusion from pathway databases to
reconstruct models de novo but so far they have
not yielded functional models,74 or only prototypes
that lack validation with experimental data.75 In
addition, powerful methods exist to identify metabolic
genes for a given enzymatic function76,77—but
this function has to be already contained in the
model. Optimization-based methods help identifying
gaps in metabolic network reconstructions, and
they consolidate the models by introducing new
reactions, or by modifying existing reactions. Existing
algorithms, however, do not consider global changes
in network structures or potential effects on the
quality of model predictions.78 Available methods,
thus, have limitations in automatically generating
predictive network models, and novel concepts, such
as Clauset et al.,79 are needed.

Cellular Optimality and Design
The choice of a biologically meaningful objective
function is critical for FBA. Identifying the objec-
tive function—or cellular design principles—can be
regarded as the inverse problem of FBA. Where FBA
finds an optimal flux vector given some objective
function, a more challenging problem is to infer the
objective for an experimentally determined reference
flux vector. Early work on this problem used a bi-level
optimization approach to test existing hypothetical
objectives.80 The OptFind method solves two opti-
mizations in one step, using the duality theorem of LP
to flatten the two optimality layers. In an application
to E. coli under aerobic and anaerobic conditions,
a high coefficient of importance was found for the
biomass function.80 Method refinements allowed to
derive objectives de novo.81 Similar techniques—in
combination with binary variables, requiring the use
of MILP— can find optimal knockout strategies lead-
ing to the overproduction of a desired product.59

By automatically querying reaction databases, an
optimal strain is composed, and the method yields
optimal substrates for different microbes.82 Similar
approaches have been established using stochastic
optimization83 and sensitivity analysis of metabolic
flux distributions.84

Another way to analyze biological networks
begins with the hypothesis that cells have optimized
their operation over evolutionary time-scales, as
assumed in FBA. However, FBA does not provide

insight into specific control mechanisms. Further
elaborations of principles of optimal control theory
(already present in MoMA) could elucidate large-
scale metabolic control circuits. For instance, the
cybernetic approach85 treats metabolic control as a
set of dynamic, optimal resource allocation problems
that are solved in parallel with the mass balances.
Predictions on gene expression and enzyme activity
result from choices between competing alternatives,
each with a relative cost and benefit for the
organism. In addition, postulates for specific pathway
architectures have resulted from this approach.86

Toward Large-Scale Network Integration
and Dynamics
To build on these successes toward creation of a
whole-cell model, approaches to model integration
must be developed, in particular, with large-scale
kinetic models.87 The integration of metabolism
with transcriptional regulation was already described
above. More recently, these integration methods
were expanded to include ordinary differential
equations (ODEs).43 The method (called ‘integrated
FBA’ or iFBA; see Figure 6) was used to build
an FBA model of E. coli central metabolism,
together with a Boolean logic-based regulatory
network and a set of ODEs that described catabolite
repression.88 The resulting model had significant
advantages over either the rFBA or ODE-based models
alone, particularly in predicting the consequences
of gene perturbation. Another approach has been
developed which incorporates coarse-grained time-
scale information about signaling dynamics with
metabolic models.89 Finally, recent advances toward
large-scale dynamic models include those that rely on
simplified reaction kinetics90,91 or on ensembles of
models.92

In addition to explicitly modeling cellular
regulation, one can exploit that stoichiometric
constraints restrict the systems dynamics, for instance,
by conserved moieties.25 Early work addressed this
topic for chemical reaction networks. For instance,
in the 1970s, Feinberg, Horn, and Jackson started
deriving theorems to determine the possible dynamic
regimes, such as multistability and oscillations, based
on network structure alone. The specific challenges
posed by biological systems lead to application studies
as well as further theory development.93 For instance,
the theory can be used in stability analysis and for
model discrimination by safely rejecting hypotheses on
reaction mechanisms; this analysis relies on a modular
approach where subnetworks that correspond to
EMs are investigated individually.94 Other algorithms
for the identification of dependent species in large
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FIGURE 6 | Models have been constructed
which build on the constraint-based framework
to integrate metabolic, transcriptional
regulatory, and signal transduction networks
(each represented using different mathematics)
into a single model.
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biochemical systems—to be employed, for instance, in
model reduction—have recently become available.95

CONCLUSION
In sum, large-scale metabolic network modeling has
matured as a field, with a library of computational
techniques, published networks for a large and
increasing number of organisms, and an extensive
body of supporting experimental evidence. It is clear

that such modeling can be extremely useful, notwith-
standing its limitations. These studies have also
established the essentiality of other biological mod-
els—metabolism alone cannot explain most observed
phenotypic behaviors. It seems unrealistic to expect
that data which would allow detailed genome-scale
modeling of other biological networks will arrive in
the next few years. However, we re-emphasize that
scientists felt the same way about metabolism just
over a decade ago.
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